
research papers

Acta Cryst. (2005). B61, 585–594 doi:10.1107/S0108768105023931 585

Acta Crystallographica Section B

Structural
Science

ISSN 0108-7681

Bayesian methods for the conformational
classification of eight-membered rings
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Two methods for the classification of eight-membered rings

based on a Bayesian analysis are presented. The two methods

share the same probabilistic model for the measurement of

torsion angles, but while the first method uses the canonical

forms of cyclooctane and, given an empirical sequence of eight

torsion angles, yields the probability that the associated

structure corresponds to each of the ten canonical conforma-

tions, the second method does not assume previous knowledge

of existing conformations and yields a clustering classification

of a data set, allowing new conformations to be detected. Both

methods have been tested using the conformational classifica-

tion of Csp3 eight-membered rings described in the literature.

The methods have also been employed to classify the solid-

state conformation in Csp3 eight-membered rings using data

retrieved from an updated version of the Cambridge

Structural Database (CSD).
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1. Introduction

The conformational analysis of organic (Allen & Motherwell,

2002) and metallic complexes (Zimmer, 2001) is an active

research area, the CSD being a powerful tool in this kind of

study (Allen & Taylor, 2004; Orpen, 1993). Despite the large

amount of structural data available, a full understanding of the

factors that determine the molecular structure of a particular

compound has not yet been achieved. In coordination and

organometallic chemistry the manner in which a ligand

controls the properties of the complex depends on a combi-

nation of steric, electronic and conformational factors.

Detailed knowledge of these effects will allow a rational

design of complexes with specific and predictable properties

(Meyer, 1989).

A review of the different statistical methods for confor-

mation analysis can be found in Zimmer (2001). Reviews such

as this generally take a data-analysis approach where no

model is assumed for the data generation mechanism, and all

the conclusions rely on the correlation structure of the data or

their similarities. Cluster analysis and principal-component

analysis are examples of such methods. In contrast, an

essential step in our approach consists of specifying a prob-

abilistic model for the observed sequences of torsion angles.

This model is mainly based on assuming that the sequences of

torsion angles are generated, after a perturbation that takes

into account measurement errors, from a number k of

‘preferred’ conformations. Two levels of generality can then be

chosen: either the ‘preferred’ conformations are assumed to

be provided, a priori, by the user; for example, they could

consist of the ten canonical conformations for cyclooctane, as

described in Hendrickson (1967) and shown in Fig. 1; or no

assumption is made about the ‘preferred’ conformations nor



about their number. Associated with these two levels of

generality, we propose the following two methods:

(i) First level of generality: the ‘preferred’ conformations

are provided by the user: an individual classification of the

observed structures is performed. Based on the eight values of

the torsion angles for a structure, it is possible, through Bayes’

rule, to compute the posterior probability that the structure

comes from each of the preferred conformations. These

probabilities provide more information than only a classifi-

cation: their relative order of magnitude indicates, in parti-

cular, the strength of the evidence in the data in favour of a

given conformation. Likewise, similarities between confor-

mations can be detected. We will refer to this method as the

‘Classification method’.

(ii) Second level of generality: no previous knowledge of the

‘preferred’ conformations is assumed: Bayesian inference on

the number of conformations, the conformations themselves,

their frequencies of occurrence, as well as the standard

deviations associated to each conformation were determined.

As a result of the Bayesian approach, a posterior distribution

for each of the parameters of interest can be obtained. The

structures in each of the obtained conformations can also be

classified. We will refer to this method as the ‘Full Bayesian

Analysis method’.

Notice that the Classification method performs the indivi-

dual classification of structures but requires a priori specifi-

cation of the ‘preferred’ conformations. The Full Bayesian

Analysis applies to a set of structures but allows for the

detection of new conformations and is not dependent on

theoretical canonical conformations.

In order to test the methods described in this article we

have studied the data of the Csp3 eight-membered rings

analyzed by Allen and co-workers (Allen et al., 1996) using

cluster and principal components techniques. We have also

studied the data of Csp3 eight-membered rings extracted from

an updated CSD version. It is to be stressed that the proposed

methods can easily be extended to rings with differing

numbers of atoms.

2. Theory

2.1. The model

The eight torsion angles observed for a given structure

retrieved from the CSD are denoted by s = (�1, �2, �3, �4, �5,

�6, �7, �8). The model we assume for the data-generation

mechanism resulting in a realisation of s is built up in three

steps:

(i) Randomly choose one of the k ‘preferred’ conforma-

tions, according to the probabilities p1, p2, . . . , pk. These

probabilities are unknown parameters that correspond to the

natural frequency of occurrence of each ‘preferred’ confor-

mation. We denote by C the index of the chosen conformation

(C thus ranges from 1 to k).

(ii) Let l(C) = (�C,1,�C,2, �C,3, �C,4,�C,5, �C,6, �C,7,�C,8) be

the sequence of torsion angles associated with conformation

C. The observed values of the torsion angles in � may corre-

spond to a different starting point in the structure than that in

the canonical sequence l(C). To take this fact into account, a

starting point � between 1 and 8 was randomly chosen, with

equal probabilities and the cyclically translated sequence

�ðC;�Þ ¼ ð�C;�; �C;ðð�Þmod 8þ1Þ; �C;ð�þ1Þmod 8þ1; : : : ; �C;ð�þ6Þmod 8þ1Þ

was constructed, where, for any integer j, j mod 8 denotes

j modulo 8, i.e. the remainder of the integer division of j by 8.

Moreover, the sequence of torsion angles can be read in a

clockwise or counter-clockwise manner. The counter-clock-

wise version of l(C,�) is readily obtained as

�ðC;�Þ ¼ ð�C;�; �C;ð�þ6Þmod 8þ1; �C;ð�þ5Þmod 8þ1; : : : ; �C;ð�mod 8þ1ÞÞ:

Let us now introduce the variable d which takes the values 1 or

�1 according to whether the direction of the rotation is

clockwise or counter-clockwise. The two previous formulae

can now be summarized as

�ðC; �; dÞ ¼ ð�C;�;�C;ð��1þd�1Þmod 8þ1; �C;ð��1þd�2Þmod 8þ1; : : : ;

�C;ð��1þd�7Þmod 8þ1Þ:

It is also necessary to consider the coordinate inversions from

which sequences of torsion angles are readily obtained by a

change of sign. We therefore introduce the random variable �
which can take either the value 1 or �1 with equal prob-

abilities and

�ðC; �; d; �Þ ¼ �� ð�C;�;�C;ð��1þd�1Þmod 8þ1;

�C;ð��1þd�2Þmod 8þ1; : : : ; �C;ð��1þd�7Þmod 8þ1Þ:

As an example, consider conformation BC, index C = 1 in

Appendix A, we have
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Figure 1
Canonical forms of cyclooctane.



�ð1; 2;�1; 1Þ ¼ ð44:7; 65:0;�65:0;�44:7; 102:2;�65:0;

65:0;�102:2Þ:

(iii) Finally, we consider that the observed sequence is

obtained from �(C, �, d, �) after an additive perturbation """ =

("1, "2, "3, "4, "5, "6, "7, "8), that is

� ¼ �ðC; �; d; �Þ þ ";

where the perturbation’s components "1, "2, "3, "4, "5, "6, "7, "8

are assumed to be independent Gaussian random variables

with a zero mean and then unknown variance parameter �c
2,

which may depend on the conformation C.

As a conclusion, from the relation between s, l(C, �, �) and

", in step (iii) we deduce that the density (�1, �2, �3, �4, �5, �6,

�7, �8)! f(�1, �2, �3, �4, �5, �6, �7, �8) of the random variable �
is easily computable: it is a mixture of multivariate laws

f ð�Þ ¼
X

c¼ 1;:::;k

pc f ð�; cÞ;

where f(s,c) are themselves mixtures of multivariate Gaussian

laws

f ð�; cÞ ¼
X

�¼ 1;:::;8

X
d¼�1;1

X
�¼�1;1

fG �; �ðc; �; d; �Þ; �2
c

� �
;

s! fG (s, l(c, �, d, �), �2
c ) denoting the density of the eight-

dimensional Gaussian law with mean �(c, �, d, �) and diagonal

covariance matrix �2
c Id.

When analysing torsion angle data, the symmetry of the

conformation space has to be taken into account. In particular,

to be able to apply the principal-component analysis, for

example, the initial torsion angle data have to be expanded by

symmetry. In our paper, we avoid expanding the data by

incorporating the symmetries in the model formulation

through the starting point, rotation direction and sign of the

torsion angles, as described above.

3. The Classification method

As explained in x1, the Classification method assumes the first

level of generality for the model: the ‘preferred’ conforma-

tions are supplied by the user. In the following these will be

taken to be the ten canonical conformations crown (D4d),

twist-boat (S4), boat–boat (D2d), boat (D2d), twist-chair–chair

(D2), chair–chair (C2v), chair (C2h), twist-chair (C2h), twist-

boat–chair (C2) and boat–chair (Cs), as described in Allen et

al. (1996), for example. The table in Appendix A contains the

torsion angles corresponding to these canonical conforma-

tions.

Using Bayes’ rule we are able to compute, given an

observed sequence (�1, �2, �3, �4, �5, �6, �7, �8), the probability

that it was generated from the conformation c:

PðC ¼ cj� ¼ ð�1; �2; �3; �4; �5; �6; �7; �8ÞÞ

¼ pc f ð�; cÞ
� X

c0 ¼ 1;:::;10

pc f ð�; c0Þ

 !
:

The computation of these probabilities requires the specifi-

cation of a prior distribution both for (p1, p2, p3, p4, p5, p6, p7,

p8, p9, p10) and for �c, the standard deviation of the pertur-

bations ", which are to reflect our prior knowledge, if any,

about these quantities. As for the proportions, we make the

choice pc = 1/10, for c = 1, . . . , 10, which means that we do not

favour a priori any particular canonical conformation. For �c,

if we choose �c = 10�, from the well known property of the

Gaussian law, 95% of the values taken by the perturbations

will lie between �20 and 20�, which seems a reasonable range

of values. We recommend repeating the analysis for different

values of �c, in order to check that the classification results are

not too sensitive to changes in values of �c.

For an illustration, we finish this section by applying the

Classification method to the YOPPIC structure (Villar et al.,

1995), retrieved from the CSD containing two molecules in the

asymmetric unit with torsion angles: s(a) = (44.93, �47.95,

98.13, �53.31, �57.89, 81.61, 13.77, �72.05) and s(b) = (4.58,

21.13, �89.86, 55.43, 55.75, �89.68, 15.40, 18.44). Fig. 2 illus-

trates the posterior probabilities of each of the 10 canonical

conformations in the case of � = 10�. For both molecules the

boat–chair (BC) conformation is the most likely one. In the

case of YOPPIC1, the posterior probability of the BC

conformation is almost one, while for YOPPIC2 a posterior

probability of 0.21 is assigned to the boat–boat (BB) confor-

mation and a posterior probability of approximately 0.79 to

the BC conformation, indicating that the structure is inter-

mediate between the BB and BC

conformations.

4. The Full Bayesian Analysis
method

For this method no previous

knowledge of the ‘preferred’

conformations is assumed, in

particular, the number of these

‘preferred’ conformations is

unknown. The parameters of the

statistical model we consider are

therefore: the number k of

‘preferred’ conformations, the k
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Acta Cryst. (2005). B61, 585–594 J. Pérez et al. � Bayesian methods for conformational classification 587

Figure 2
Posterior probabilities for the two molecules in the asymmetric unit of YOPPIC.



sequences of torsion angles corresponding to these confor-

mations, l(1), . . . , l(k), their corresponding frequencies of

occurrence p1, . . . , pk, and the associated standard deviations

�1, . . . , �k. The Bayesian approach consists of first providing

prior distributions for these parameters and updating these

distributions with the information provided by the observed

data through Bayes’ rule, to finally compute the posterior

distributions of the parameters. As mentioned in x2.1 we

describe the data by a multivariate mixture model. The

problem of Bayesian inference in mixture models has been

extensively studied in the last decade. Useful reviews can be

found in Robert & Casella (2005) or Robert (1996). As

described in these reviews, no analytically tractable form for

the posterior distributions of the parameters is available. It is,

however, possible to simulate as many samples of these

posterior distributions as desired using a Markov Chain

Monte Carlo algorithm, for a simple introduction see Robert

& Casella (2005) and for a description of the application to

mixture models see Robert (1996). From the samples it is then

possible to obtain approximations of any quantity of interest

related to the posterior distribution: a histogram of the draws

for example can provide an approximation to the density. The

case when the number of components in the mixture is itself a

parameter requires a somehow more sophisticated Markov

Chain Monte Carlo algorithm called Reversible-Jump algo-

rithm, which has been described in Richardson & Green

(1997). A detailed description of the mathematical aspects of

the ‘Full Bayesian Analysis’ method

we have implemented can be found in

Nolsøe et al. (2005), which is available

from the authors upon request.

The output of the ‘Full Bayesian

Analysis’ method consists of, on one

hand, a histogram of the number of

‘preferred’ conformations after the

structures have been analyzed,

providing probabilities that the data

have been generated from a one-,

two-, three- etc conformations

mixture. For each of the possible

estimated number of conformations,

one obtains as well histograms of

the posterior distributions of the

‘preferred’ conformations torsion

angles, of their frequencies and their

associated standard deviations.

5. Experimental

5.1. Structural analysis

The Cambridge Structural Data-

base (Allen, 2002), Version 5.25, was

searched for all the structures

containing Csp3 eight-membered

rings in organic structures. A total of

95 refcodes matched the search, the

total number of fragments was 115. Torsion angles were

tabulated and transferred to Excel for statistical analysis, these

data are included in the supplementary material.1

The Classification method is very simple to implement and

was programmed in Visual Basic and incorporated as a macro

in Excel. The Full Bayesian Analysis method is not so

straightforward to implement and was programmed in Java.

6. Results and discussion

6.1. Conformational analysis of Csp3 eight-membered rings in
Allen et al. (1996).

6.1.1. Classification method: the preferred conformations
are assumed to be the canonical conformations. In order to

test the conformational classification method described above

we employed Csp3 eight-membered rings. We chose this

system because the conformations of cyclooctane and related

eight-membered rings have been widely studied, both theo-

retically (Hendrickson, 1967) and experimentally (Allen et al.,

1996; Evans & Boeyens, 1988). Table 1 shows the most likely

canonical conformations, together with the associated prob-

abilities, that were deduced from the computation of the

posterior probabilities with the Classification method, for the

research papers
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Table 1
Conformational analysis of Csp3 eight-membered rings in Allen et al. (1996) according to the methods
described in this paper.

Classification Method
Full Bayesian

� = 10� � = 20� method

AMCOCA 1.00 BC 1.00 BC �(1)
BAGPII 1.00 BC 1.00 BC �(1)
BCOCTB 1.00 BC 1.00 BC �(1)
CLCOCT 1.00 BC 1.00 BC �(1)
COCOAC 1.00 BC 1.00 BC �(1)
COCOXA10 1.00 BC 1.00 BC �(1)
COVLUU 1.00 BC 0.99 BC; 0.01 TBC �(2)
CURBIA 1.00 BC 1.00 BC �(1)
CUVZEY 1.00 BC 1.00 BC �(1)
CYOCDL 1.00 BC 1.00 BC �(1)
DEZPUT 0.73 CR; 0.03 CC; 0.24 TCC 0.67 CR; 0.15 CC; 0.19 TCC �(4)
ECOTDA 0.90 BC; 0.10 TBC 0.51 BC; 0.49 TBC �(3)
EOCNON10 1.00 TCC 0.06 CC; 0.94 TCC �(5)
GATRAU 1.00 BC 1.00 BC �(1)
GIVBAO 1.00 BC 1.00 BC �(1)
HOXTHD 1.00 BC 0.98 BC; 0.02 TBC �(2)
HUMULB10 0.12 BC; 0.88 TBC 0.27 BC; 0.73 TBC �(3)
KESVIN 1.00 BC 0.98 BC; 0.02 TBC �(2)
OCSHYD 1.00 BC 1.00 BC �(1)
PCDODO 1.00 BC 0.78 BC; 0.22 TBC �(3)
SATKIH (1) 0.41 CC; 0.59 TCC 0.47 CC; 0.52 TCC �(6)
SATKIH (2) 0.08 CC; 0.92 TCC 0.35 CC; 0.65 TCC �(6)
SATKIH (3) 0.95 CC; 0.05 TCC 0.01 CR; 0.65 CC; 0.34 TCC �(6)
SATKIH (4) 0.21 CR; 0.04 CC; 0.75 TCC 0.55 CR; 0.18 CC; 0.27 TCC �(4)
SEJFIW (1) 0.89 BC; 0.08 TBC; 0.03 TC 0.38 BC; 0.33 TBC; 0.29 TC �(7)
SEJFIW (2) 0.79 BC; 0.19 TBC; 0.02 TC 0.35 BC; 0.35 TBC; 0.30 TC �(7)
SPOCTC10 1.00 BC 1.00 BC �(1)
SPTZBN 0.88 BC; 0.12 TBC 0.49 BC; 0.51 TBC �(3)
VALGOE (1) 1.00 BC 0.99 BC; 0.01 TBC �(1)
VALGOE (2) 1.00 BC 0.99 BC; 0.01 TBC �(1)
VASWOB 1.00 BC 0.97 BC; 0.03 TBC �(2)

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: BS5019). Services for accessing these data are described
at the back of the journal.



rings with Csp3 atoms analyzed by

Allen and co-workers (Allen et al.,

1996).

As can be seen in Table 1 the most

frequent conformation is boat–chair

(BC), this is the most likely confor-

mation in 23 of the 31 data analyzed.

The twist-boat–chair (TBC) and twist-

chair–chair (TCC) conformations

often exhibited a significant prob-

ability in the structures reviewed in

Table 1. These conformations (BC, TBC and TCC) in

cyclooctane have been identified as energy minima with

respect to all the small distortions (Anet & Krane, 1973), with

BC being the most stable conformation.

In Table 1, 13 structures have a probability of 1 for the BC

conformation with � = 10 or 20�. These structures exhibit

torsion angles similar to those of the ideal BC conformation

and can be identified as free (non-fused) cyclooctane rings in

accordance with the results of Allen and co-workers (Allen et

al., 1996). Interestingly, the appearance of a non-zero prob-

ability for more than one ideal conformation can be used to

identify a structure as intermediate between two or more

theoretical conformations. Thus, some structures in Table 1

show a small probability (0.01–0.02) for the TBC conforma-

tion, but only in the case of � = 20�. All the structures show a

similar trend in the deviation from the ideal BC conformation:

the ideal BC angles of 44.7 and �102� (see Appendix A) show

absolute value ranges of 19–30 and 88–94�. These structures

correspond to the cluster BC/TBC described by Allen and co-

workers (Allen et al., 1996). Significantly, a value of � = 20�

was necessary to detect this conformational feature; the

advantage of using � = 20� rather than � = 10� in order to

detect the intermediate character of a conformation can be

observed throughout Table 1.

In some cases the deviation from the BC conformation is

larger (ECOTDA, HUMULB10, SPTZBN) and a significant

probability for TBC conformation appears even with � = 10�.

This corresponds to the second BC/TBC cluster identified by

Allen and co-workers (Allen et al., 1996). The remaining

structures are distorted conformations with significant prob-

abilities for CR/CC/TCC or BC/TBC/TC conformations.

6.1.2. Full Bayesian Analysis method: no previous knowl-
edge of preferred conformations assumed. We have also

studied the set of data analyzed by Allen and co-workers

(Allen et al., 1996) by the Full Bayesian method without

a priori knowledge of the ideal conformations described

previously. A histogram for the posterior distribution of k, the

number of detected conformations, is given in Fig. 3.

Six or seven clusters are found to be most likely. In Fig. 4,

box-plot-like diagrams are presented for the posterior distri-

butions of the detected conformational sequences of torsion

angles l(1), . . . , l(7), their corresponding frequencies of

occurrence p1, . . . , p7, and the associated standard deviations

�1, . . . , �7, when seven clusters are chosen. Eight horizontal

lines were drawn for each box, representing the percentiles 10,

15, 25, 50, 75, 85 and 90% of the distribution. Moreover, in the

case of the conformations l(1), . . . , l(5), a wider horizontal

black line was drawn which represents the torsion angles of

the representative member of clusters detected by Allen et al.

(1996). The torsion angles of the centroids for the seven

clusters are presented in Table 2.

In Table 1 the last column indicates to which of the detected

clusters is each individual structure in the dataset assigned.

The detected clusters are interpreted as follows.

Cluster �(1): This is the most populated cluster, it includes

15 data. The torsion angles of the centroids of the clusters

(Table 2) are close to those of the boat–chair conformation.

This cluster essentially agreres with the BC cluster reported by

Allen and co-workers (Allen et al., 1996). The structures

correspond to free (non-fused) cyclooctane rings and it is the

expected conformation according to energy (Hendrickson,

1967; Anet & Krane, 1973).

Cluster �(2): As can be seen in Table 1 this cluster includes

4 data. The torsion angles in this structures are close to those

of the ideal boat–chair (BC), but there are some differences:

the ideal BC angles of 44.7 and �102� (see the supplementary

material) show absolute value ranges of 19–30 and 88–94�; this

means a flattening of the BC structure towards the twist-boat–

chair (TBC) conformation. In addition, BC and TBC confor-
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Figure 3
Probabilities for the number of conformations.

Table 2
Torsion angles (�) for the centroids of the clusters obtained by the Full Bayesian Analysis method
applied to the Csp3 eight-membered rings of Allen et al. (1996).

Cluster �1 �2 �3 �4 �5 �6 �7 �8 Cluster type Data

�(1) �98.9 39.3 67.8 �63.2 �46.0 100.8 �66.0 66.7 BC 15
�(2) �97.5 54.9 53.6 �82.4 �8.1 81.1 �71.3 66.8 BC/TBC 4
�(3) �82.5 5.1 85.8 �53.9 �57.7 100.8 �69.6 72.3 BC/TBC 4
�(4) 73.5 �94.4 92.6 �70.2 69.9 �87.2 87.7 �68.7 – –
�(5) 68.6 �101.0 87.5 �49.1 54.0 �93.7 89.1 �57.4 – –
�(6) 1.7 61.9 101.8 �67.3 60.3 101.0 83.8 �5.8 – –
�(7) 88.5 3.6 �74.5 89.8 �88.1 70.8 �4.9 �88.5 – –



mations can interconvert by a pseudorotation pathway (Allen

et al., 1996).

Cluster �(3): This cluster includes 4 data. When the torsion

angles for the centroid of this cluster are analyzed by the

Classification method significant probabilities for the BC and

TBC conformations are obtained. In fact, this corresponds to

the BC/TBC cluster proposed by Allen and co-workers (Allen

et al., 1996).

The remaining clusters are less populated (Table 1) and

they correspond to distorted structures between the ideal

conformations. The torsion angles of the centroids are shown

in Table 2. Notice that the distribution for the corresponding
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Figure 4
Box-plot type representations of the posterior distributions of the conformations detected, frequencies and standard deviations of Csp3 eight-membered
rings in Allen et al. (1996). Eight horizontal lines were drawn for each box, representing the 10, 15, 25, 50, 75, 85 and 90% percentiles of the distribution.



standard deviations presents a higher

dispersion (Fig. 4), which can be

explained by the fact that only very

few observations belong to these

clusters.

6.2. Conformational analysis of Csp3

eight-membered rings in the CSD

In order to complete the confor-

mational analysis described above we

have studied the Csp3 eight-

membered rings included in the CSD,

Version 5.25. The refcodes of the

structures and the results obtained by

the Classification method and the full

Bayesian Analysis method are shown

in Table 3 (the results of the refcodes

analyzed in x6.1 have been omitted

for clarity).

The BC/TBC pseudorotation

pathway is clearly visible from the

results in Table 3 for the Classification

method: 30 data show a probability of

1.00 for BC, 19 data exhibit a small

distortion from the BC to the TBC

conformation (a significant prob-

ability appears only when � = 20�), 12

data show a larger deviation from BC

and two structures even show a

probability of 1.00 for the TBC

conformation.

An accessible deformation of the

BC conformation towards the TBC

conformation can also be inferred

from the probabilities of the struc-

tures QOTGEL, HEMTIC or

JOQMIL, where chemically indis-

tinguishable fragments show different

probabilities for BC and TBC

conformations.

In Table 3, 12 data sets are assigned

to the chair (C) conformation, but all

of them have fused rings in the 1,2 and

5,6 positions, most being chemically

very similar. There are also 3 data

with a probability of 1 (using both � =

10 or 20�) for the boat (B) confor-

mation having a variable number of

fused rings to the Csp3 eight-

membered ring.

When data are analyzed by the Full

Bayesian method the histogram of the

posterior distribution for k indicates

that seven clusters are found to be

most likely. In Fig. 5, box-plot-like

diagrams are presented for the
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Table 3
Conformational classification of Csp3 eight-membered rings in the CSD, Version 5.25, according to the
methods described in this paper.

Classification method
Full Bayesian

� = 10� � = 20� method

BAJQIN 1.00 BC 0.90 BC; 0.10 TBC �(2)
BAJQOT 1.00 BC 0.77 BC; 0.23 TBC �(2)
BAJQUZ 1.00 BC 1.00 BC �(1)
BEYPAW 1.00 BC 1.00 BC �(1)
DUVFUV03 (1) 1.00 BC 1.00 BC �(1)
DUVFUV03 (2) 1.00 BC 1.00 BC �(1)
FADTAG 1.00 BC 1.00 BC �(1)
GIPPAW 1.00 B 1.00 B �(6)
GIQRUT 1.00 BC 1.00 BC �(1)
HABXEN (1) 1.00 TCC 0.07 CR; 0.17 CC; 0.76 TCC �(4)
HABXEN (2) 1.00 BC 1.00 BC �(1)
HAVGOA 1.00 C 1.00 C �(5)
HAVGUG 1.00 C 1.00 C �(5)
HEMTIC (1) 1.00 BC 0.70 BC; 0.30 TBC �(2)
HEMTIC (2) 1.00 BC 0.72 BC; 0.28 TBC �(2)
HEMTIC (3) 0.93 BC; 0.07 TBC 0.53 BC; 0.47 TBC �(2)
HEMTIC (4) 1.00 BC 0.81 BC; 0.19 TBC �(2)
IFOKOD 1.00 BC 1.00 BC �(1)
IGARUD 1.00 BC 0.98 BC; 0.02 TBC �(2)
JAGQIR 0.08 CR; 0.12 CC; 0.80 TCC 0.47 CR; 0.22 CC; 0.31 TCC �(4)
JITNIJ 1.00 C 1.00 C �(5)
JIWWUH (1) 1.00 BC 1.00 BC �(1)
JIWWUH (2) 1.00 BC 1.00 BC �(1)
JOQMIL (1) 0.98 BC; 0.02 TBC 0.61 BC; 0.39 TBC �(2)
JOQMIL (2) 1.00 BC 0.48 BC; 0.52 TBC �(2)
JOQMIL01 (1) 1.00 BC 0.59 BC; 0.41 TBC �(2)
JOQMIL01 (2) 0.85 BC; 0.15 TBC 0.48 BC; 0.52 TBC �(2)
KIKWAC 1.00 C 1.00 C �(5)
KOJDIW 0.75 BC; 0.25 TBC 0.44 BC; 0.56 TBC �(2)
KOJDOC 1.00 BC 0.97 BC; 0.03 TBC �(2)
KOJNUS 1.00 B 1.00 B �(6)
KOJPAA (1) 1.00 C 1.00 C �(5)
KOJPAA (2) 1.00 C 1.00 C �(5)
MOZSAV 1.00 C 1.00 C �(5)
NACGAZ 1.00 BC 1.00 BC �(1)
NADCOK 1.00 S 0.20 BB; 0.78 S; 0.02 B �(6)
NADNAH 0.48 BC; 0.52 TBC 0.37 BC; 0.63 TBC �(2)
NUJHUV 1.00 BC 1.00 BC �(1)
NUWMIB 1.00 BC 0.86 BC; 0.14 TBC �(2)
NUZDER 1.00 BC 0.97 BC; 0.03 TBC �(2)
PAPWAE (1) 1.00 C 1.00 C �(5)
PAPWAE (2) 1.00 C 1.00 C �(5)
PAZJEF 1.00 BC 1.00 BC �(1)
PETFOJ 0.04 BC; 0.96 TBC 0.21 BC; 0.79 TBC �(3)
PIVWEW 1.00 BC 1.00 BC �(1)
POYJOC (1) 1.00 BC 1.00 BC �(1)
POYJOC (2) 1.00 BC 1.00 BC �(1)
QADNEP 1.00 BC 0.97 BC; 0.03 TBC �(2)
QETVUG 1.00 TBC 1.00 TBC �(3)
QOTGEL 1.00 BC 1.00 BC �(1)
QOTGEL01 1.00 BC 0.99 BC; 0.01 TBC �(2)
RECFOU 1.00 BC 1.00 BC �(1)
RECPUK 1.00 BC 1.00 BC �(1)
RILWIS (1) 1.00 BC 0.75 BC; 0.25 TBC �(2)
RILWIS (2) 1.00 BC 0.72 BC; 0.28 TBC �(2)
RIZCUY 0.96 BC; 0.04 TBC 0.56 BC; 0.44 TBC �(2)
RULMAM 0.91 BC; 0.09 TBC 0.52 BC; 0.48 TBC �(2)
SORDAE 1.00 C 1.00 C �(5)
VIDNAX 1.00 C 1.00 C �(5)
VIDNAX01 (1) 0.01 S; 0.99 B 0.14 S; 0.86 B �(6)
VIDNAX01 (2) 0.27 S; 0.73 B 0.32 S; 0.68 B �(6)
VIDNEB 1.00 C 1.00 C �(5)
WAHRAY 1.00 B 1.00 B �(6)
WIDSEH 0.02 BC; 0.98 TBC 0.19 BC; 0.81 TBC �(3)
WIRPAO 1.00 BC 1.00 BC �(3)
WOQKUI 1.00 BC 0.97 BC; 0.03 TBC �(2)
XENREN 0.97 BC; 0.03 TBC 0.58 BC; 0.42 TBC �(2)
XEPWUK 1.00 BC 1.00 BC �(1)



posterior distributions of the conformational sequences of

torsion angles detected, their corresponding frequencies of

occurrence and the associated standard deviations. The

torsion angles of the centroids are presented in Table 4. In

clusters �(1), �(2) and �(3) the torsion angles for the

centroids are similar to those found in the three most popu-

lated clusters obtained in x6.1, corresponding to the BC or

BC/TBC conformations.

The most significant differences with data analyzed in x6.1

are clusters �(5) and �(6). Cluster �(5) includes structures

having the chair (C) conformation. For �(5) in Fig. 5 a wider

horizontal black line is drawn which represents the torsion

angles of the ideal chair conformation. According to the

torsion angles of its centroid (Table 4) cluster �(6) corre-

sponds to structures having a boat (B) conformation, which is

in agreement with the results obtained by the Classification

method.

6.3. Features of the methods described and differences with
PCA

When studying the conformations of ring systems using

familiar intramolecular parameters such as torsion angles, the

exploration and classification of the data are made difficult by

the large number of variables for each observed structure: for

an eight-membered ring, for example, the data observed lie in

an eight-dimensional space, even if it

is well known that there are only five

degrees of conformational freedom.

One way around the problem is to

achieve a dimension reduction in

order to be able to display the data in

a two- or three-dimensional space and

visually detect groups of molecules.

This is the method used in the prin-

cipal component analysis: for

example, the direction given by the

first principal component (pc1) is the

direction along which the data present

more variability and therefore the

possible groups of structures can be

distinguished.

The two methods described in this

paper do not perform any kind of

dimension reduction, but are

designed to deal directly with

grouping in multivariate data. The

purpose and the output of the ‘Clas-

sification method’ and the ‘Full

Bayesian Analysis method’ are

different but, in our experience, both

provide useful information for the

conformational analysis of structures.

We would like to emphasize the

following facts:

(i) Both methods share the same

underlying probabilistic model to

explain the observed torsion angles. In particular, treatment of

the symmetry of the parameter space, the enantiomers etc. is

taken into account in the modelling step, which, in contrast to

the pca method, allows the symmetry expansion of the initial

set of torsion angles to be avoided.

(ii) The ‘similarity’ between two structures can be under-

stood in terms of the underlying probabilistic model: two

structures will be found to be close if their merging in the same

group yields a high corresponding likelihood.

(iii) The ‘Classification method’ requires as input prior

knowledge of the preferred conformations. This is, of course,

a real restriction to its applicability, since for many practical

cases no sound energy-based starting point may be available.

However, we would like to stress its simplicity: it is a

straightforward sub-product of the model formulation; its

implementation only requires a few lines of code and

it is able to perform the classification of an individual structure

into one of any collection of preferred conformations of

interest to the user. Moreover, as illustrated in the experi-

mental study, significant classification probabilities for

several preferred conformations give hints about the inter-

conversion pathways that connect some of these conforma-

tions. This is also one of the acceptable by-products of the pca

method.

(iv) The ‘Full Bayesian Analysis’ method detects groups

without requiring either knowledge of the preferred confor-

research papers
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Table 3 (continued)

Classification method
Full Bayesian

� = 10� � = 20� method

XOLYEC 0.99 BC; 0.01 TBC 0.67 BC; 0.33 TBC �(2)
XUDWEY 1.00 BC 1.00 BC �(1)
XUDWIC 1.00 BC 1.00 BC �(1)
XUDWOI 1.00 BC 1.00 BC �(1)
XULROL 1.00 TBC 1.00 TBC �(5)
YAFLAS 1.00 BC 1.00 BC �(1)
YOPPEY (1) 1.00 BC 1.00 BC �(1)
YOPPEY (2) 1.00 BC 1.00 BC �(1)
YOPPIC (1) 1.00 BC 0.98 BC; 0.02 TBC �(2)
YOPPIC (2) 0.79 BC; 0.21 BB 0.18 BC; 0.08 TBC; 0.60 BB; 0.15 S �(2)
ZAVRET 1.00 BC 1.00 BC �(1)
ZAYPEU 1.00 BC 0.95 BC; 0.05 TBC �(2)
ZAYPIY 1.00 BC 0.98 BC; 0.02 TBC �(1)
AHOQOD 1.00 BC 1.00 BC �(1)
BEHNEI 1.00 BC 1.00 BC �(1)
UMIJIJ 0.86 BC; 0.14 TBC 0.49 BC; 0.51 TBC �(3)

Table 4
Torsion angles (�) for the centroids of the clusters obtained by the Full Bayesian Analysis method
applied to Csp3 eight-membered in the CSD, Version 5.25.

Cluster �1 �2 �3 �4 �5 �6 �7 �8 Cluster type Data

�(1) �97.5 38.9 65.6 �63.4 �45.5 98.7 �66.6 67.8 BC 47
�(2) �90.3 48.9 55.8 �81.0 �10.1 78.3 �72.6 69.1 BC/TBC 34
�(3) �75.3 �0.5 89.3 �56.6 �49.6 83.8 �75.9 77.2 TBC/BC 7
�(4) 75.5 �67.0 97.3 �94.9 61.8 �56.7 84.6 100.0 CC/TCC 5
�(5) 115.9 �79.7 4.7 76.7 �120.0 67.8 5.2 �74.3 C 13
�(6) �65.1 7.4 75.8 �11.7 �73.5 17.2 68.5 �11.1 B 6
�(7) �96.3 64.8 �65.3 94.3 �75.1 2.3 3.1 74.7 – –



mations or of their number. It consists of an implementation of

the Bayesian paradigm for the case where the number of

preferred conformations, the preferred conformations them-

selves, their relative frequencies of occurrence and the stan-

dard deviations of the perturbations are the unknown

parameters of interest. Since the number of preferred

conformations is itself a parameter to be inferred, the output

of the method includes the posterior probability of each

possible conformation. The implementation of the ‘Full

Bayesian Analysis’ method was carried out using the Rever-

sible-Jump Markov Chain Monte Carlo (MCMC) algorithm.

We developed our code based on the available code as

described in Cappé et al. (2003). As with any MCMC algo-

rithm, it is on one hand computationally demanding and on

the other hand requires tuning of the parameters to ensure the

convergence of the algorithm. In that sense, some experience

is needed to run the code.

(v) Finally, even if we have chosen to present the methods

using eight-membered rings, they extend to m-membered

rings in a straightforward manner. The only difference lies in
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Acta Cryst. (2005). B61, 585–594 J. Pérez et al. � Bayesian methods for conformational classification 593

Figure 5
Posterior distribution of the detected conformations, frequencies and standard deviations of Csp3 eight-membered rings in the CSD, Version 5.25. Eight
horizontal lines were drawn for each box, representing the 10, 15, 25, 50, 75, 85 and 90% percentiles of the distribution.



the formulation of the model: the expression of the density

functions f(�,c) in x2.1 is now

f ð�; cÞ ¼
X

�¼ 1;:::;m

X
d¼�1;1

X
�¼�1;1

fG �; �ðc; �; d; �Þ; �2
c

� �
;

with s! fG (s, l(c, �, d, �), �2
c ) denoting the density of the m-

dimensional Gaussian law with the mean �(c, �, d, �) given by

��ð�C; �; �C;ð��1þd�1Þmod mþ1; �C;ð��1þd�2Þmod mþ1; : : : ;

�C;ð��1þd�ðm�1ÞÞmod mþ1Þ:

7. Conclusions

(i) The Classification method that uses the canonical

conformations described in this article allows the closest ideal

conformation for an individual eight-membered ring to be

established using the eight torsion angles in the ring. More-

over, the method can easily be extended to rings with different

numbers of atoms or when choosing different canonical

conformations.

(ii) In the output of the Classification method for an indi-

vidual structure, the appearance of non-zero probabilities for

different theoretical conformations indicates that the structure

is an intermediate between theoretical conformations. In

addition, the relative value of the probability indicates the

proximity to the ideal conformation.

(iii) It is convenient to allow large values for the deviations

from the ideal torsion angles (e.g. � = 20�) in order to detect

small deviations from the ideal conformations. We recommend

checking the sensitivity of the results to different values of �.

(iv) The Full Bayesian method does not assume any

previous knowledge on the preferred conformations. It allows

on one hand a decision about the most likely number of

clusters and, on the other hand, provides details of the

centroids of the clusters, their frequencies and the estimated

standard deviations.

(v) The combined use of both methods draws significant

chemical conclusions.

APPENDIX A
Torsion angles (�) for the canonical conformations of

cyclooctane, i.e. the ‘preferred’ conformations for the Classi-

fication method are shown in the table below.
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Conf. C �C,1 �C,2 �C,3 �C,4 �C,5 �C,6 �C,7 �C,8

BC 1 65.0 44.7 �102.2 65.0 �65.0 102.2 �44.7 �65.0
TBC 2 88.0 �93.2 51.9 44.8 �115.6 44.8 51.9 �93.2
CR 3 87.5 �87.5 87.5 �87.5 87.5 �87.5 87.5 �87.5
CC 4 66.0 �105.2 105.2 �66.0 66.0 �105.2 105.2 �66.0
TCC 5 56.2 �82.4 114.6 �82.4 56.2 �82.4 114.6 �82.4
BB 6 52.5 52.5 �52.5 �52.5 52.5 52.5 �52.5 �52.5
S 7 64.9 37.6 �64.9 �37.6 64.9 37.6 �64.9 �37.6
C 8 119.9 �76.2 0.0 76.2 �119.9 76.2 0.0 �76.2
B 9 �73.5 0.0 73.5 0.0 �73.5 0.0 73.5 0.0
TC 10 37.3 �109.3 109.3 �37.3 �37.3 109.3 �109.3 37.3


